

SIMULATION FOR MINERALS INDUSTRY TRAINING HANDBOOK

2020

Model Simulate Optimize

Eng. P Chesa, 2020

1

TERMS & CONDITIONS

This document and the software to which it refers are issued under the following conditions:

1) All copyright and other intellectual property rights in the software are solely reserved to METSIM International LLC.

2) This document is confidential to clients utilizing it. This document, or any part or element thereof, will not be copied or disclosed to any third party without the written consent of PATFIO INVESTMENTS P/L.

3) This document is subject to change at the discretion of PATFIO INVESTMENTS P/L and, PATFIO INVESTMENTS P/L endeavors to produce correct and accurate information, no liability can be accepted for error or omission.

CONTENTS

PRACTICAL 1

• GETTING TO KNOW METSIM

PRACTICAL 2

• SIMPLE MODEL DEVELOPMENT

PRACTICAL 3

• DATA HANDLING IN METSIM-EXCEL

PRACTICAL 4

MODELING AN AGGLOMERATOR

PRACTICAL 5

• FEEDBACK CONTROL & FEEDFORWARD CONTROL MECHANISMS (FFC&FBC) – AGGROMERATOR MODEL & DATA COLLECTION

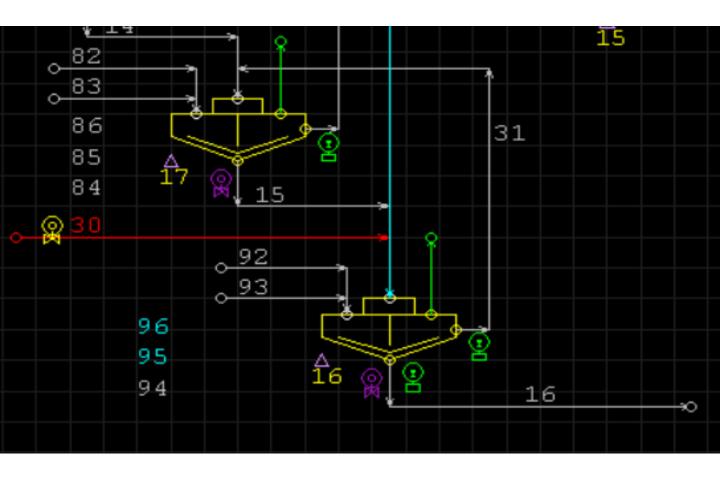
PRACTICAL 6

• BUILDING DYNAMIC MODELS

PRACTICAL 7

• COSTING - OPERATING COST ESTIMATION, MANTANACE SHIFT SCHEDULING

PRACTICAL 8


• ASSIGNMENT – PARTICIPANTS TO MODEL A SIMPLE UNIT OPERATION OR PROCESS

What can you see on this Flowsheet?

- Line colors:
 - Red=empty=red
 - White=solid
 - Blue=aqueous
 - Green=gas
 - Dark green=organic
 - Molten phases yellow/orange/dark red
- Number on lines: stream number or any chosen parameter

RIBBONS IN METSIM

Open METSIM software and identify the following Ribbons.

🚰 ME	TSIM																			
Files	Input	Comp	Merge	Weather	Dynamic	Mine	Heap	Calc	Display	Engr	Costs	Opcl	ОрсХ	OpcO	Graphics	Output	Tools	New	Help	Move
		\$ 🖌 🧏	8 🔼 🔪)	/ 🙀 🔍	😲 🔤	a D	2	Í 💩 4	N	😹 💴 🖥		1 IX	P1 ←C	V× O	AG	E 00:00:43	,	12345		
••• 🗸	1		i 🗙 🛒	👫 🛬 🗛	<u>11</u>	$\leftarrow \rightarrow$		S 🚥 🕻	18 🖬	ala 🕮 🚺	📕 🕖 🎑	🗵 🜽	DDE	2	Ø M	ODEL PARAM	IETERS			

 Image: state state

	7-5	
Щ і	ш	\mathbf{r}

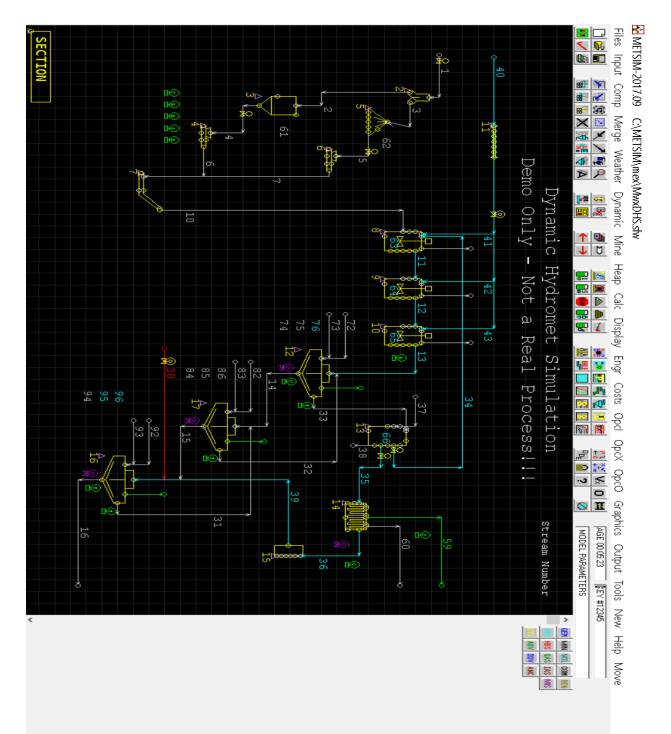
Calculate one unit operation – on activation any selected unit operation can be calculated.

Calculate Current Section – on activation all unit operations in the current section will be calculated.

Stop Execution - On activation will immediately stop flowsheet calculations. Used to abort calculations as determined by the user.

Calculate Unit Operation Range – used to repeat calculations over the range determined by the user through SCAL.

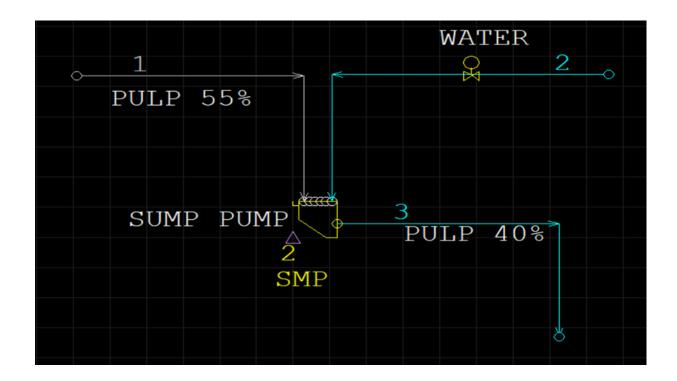
Calculate All Unit Operations – used to calculate the full flowsheet from any section. Useful for situations where the user may wish to observe flowsheet changes during simulation.



Open any Model in METSIM folder

File>Open...retrieve model>local disk C>METSIM>MEX

Some of the Flowsheets in METSIM

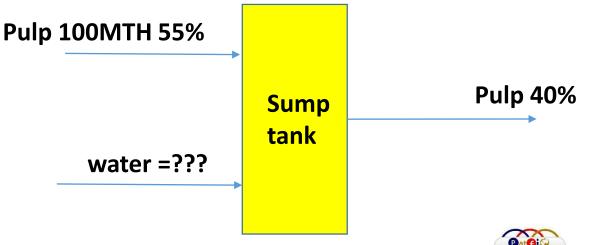

T

SUMP TANK SIMULATION

OBJECTIVES

- 1. Know how to model
- 2. Know how to do material balancing
- 3. Know how to use controls
- 4. Know how to add texts on unit operations and streams

PROBLEM DESCRIPTION


A Pulp feed at 55% (SiO2) enters a sump tank alongside a water

stream.

You are to determine the amount of water needed to achieve a

40% solids content in the outlet stream. The residence time of the

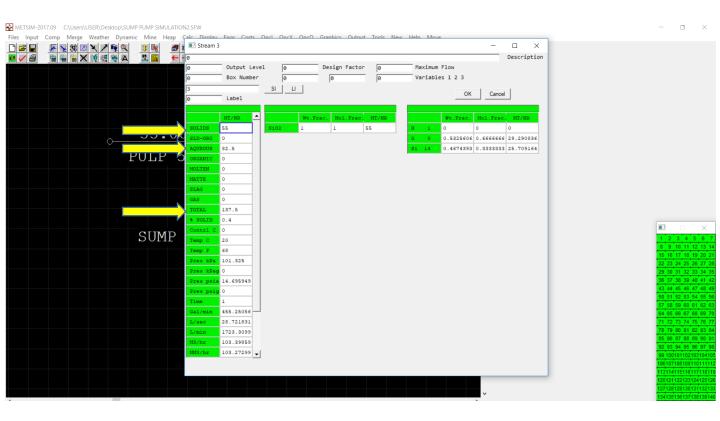
sump tank is 25mins.

<u>PROCEDURE</u>

- 1.Add a Sump from the GEN
- 2.Add streams
- 3. Rename the streams
- 4.Add elements and components " water &quartz"
- 5. Edit the components by deleting unnecessary components.
- 6.Edit the parameters to "Metric tonnes /hr "
- 7.Add components to the streams. To pulp percentage solids @55% to make a total of 55mt/hr solids in the dialogue box.
- 8.Add 10mt/hr H2O to water stream
- 9.Edit the sump unit operation and add residence time
- 10.On the display value function tab add "% solids" to the streams.
 - Calculate the unit operation and discuss your results with your
 - neighbor. Did you achieve the desired Outlet stream parameters?

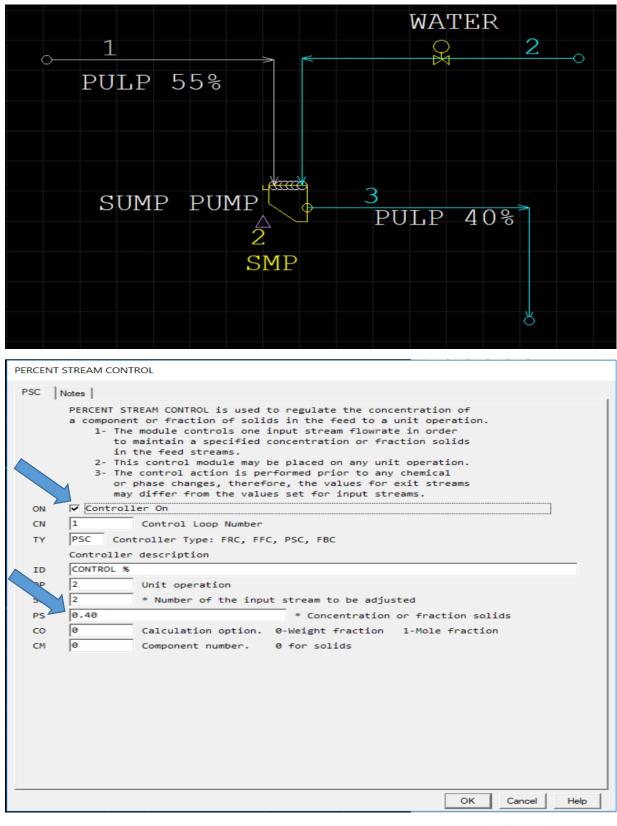
CONFIGURE STREAM 1

	n 1	- C X #12345	
		Description	
0	Output Level 0 Design Factor 0 Maximum Flow	HBS GAS IAS MIS	
0	Box Number 0 0 Variables 1 2 3	ABY DOV ANC	
1	SI LI OK	Cancel	
0			
	MT/HR 🔺 Wt.Frac. Mol.Frac. MT/HR Wt.Frac.	Hol.Frac. MT/HR	
SOLI	55 SiO2 1 1 55 H 1 0	o o	
SLD-C	0 8 0.5325606	0.6666666 29.290836	
AQUEC	45 Si 14 0.4674393	0.3333333 25.709164 PSC PHC	
ORGAL	0		
MOLTH	0		
MATT	0	FBC SPI	
SLAG	0		
GAS	0		
	0.55		
Cont			1 2 3
Temp			8 9 10
Temp		لى المراجع الم المراجع المراجع	15 16 17
	101.325		22 23 24 29 30 31
Pres	ag o		36 37 38
Pres	1a 14.695949		43 44 45
Pres	1 g 0		50 51 52 57 58 59
Time	1		64 65 66
Gal/r			71 72 73
L/sec	18.286998		78 79 80
L/mir	1097.2199		85 86 87 92 93 94
M3/h NM3/l	65.033194		99 100101
NH3/H	65.764686		106107108
			113114115



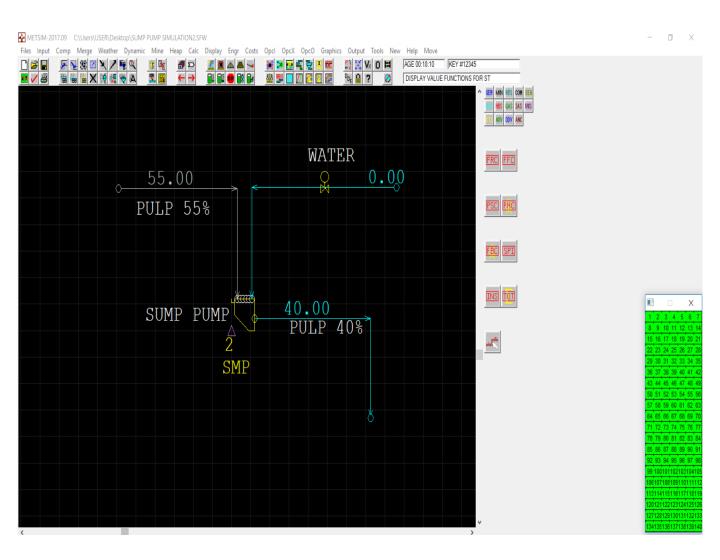
CONFIGURE STREAM 2

		a d d d d d d d d d d	∎ <mark>⊣ ≋¤⊡€₹₹!</mark> ⊠ ∷	🐹 🔽 🖸 🛱 🛛 AGE 00:19:20 🛛 KEY #1		
🖉 📅 🌆 🖌	K 📢 👯 📚 🗛 🔢 🗉 s	tream 2				
	0				escription N MTL COM BEN	
	0	Output Level	0 Design Factor 0	Maximum Flow	S GAS LAS MIS	
	0	Box Number	0 0 0	Variables 1 2 3	V DDV ANC	
	2	SI	U	OK Cancel		
	0	Label			FER	
		MT/HR			FFC	
			Wt.Frac. Mol.Frac. MT/HR	Wt.Frac. Mol.Frac.		
	O SOL:		0 0 0	H 1 0 0 0		
		ORG 0		0 8 0 0 0	IT THE	
		EOUS 37.5		Si 14 0 0 0		
		ANIC 0 TEN 0				
					SPI	
	MAT					
	GAS					
	TOT				TOT	
		OLID 0			<u>Itan</u>	•
		trl C 0				1 2 3 4
		p C 20				8 9 10 1
		F 68				15 16 17 1 22 23 24 2
		s kPa 101.325				29 30 31 3
		s kPag 0				36 37 38 3
		s psia 14.695949				43 44 45 4
		s psig 0				50 51 52 53 57 58 59 6
	Time					64 65 66 6
		/min 165.39556				71 72 73 7
	L/s					78 79 80 8
	L/m					85 86 87 8 92 93 94 9
	M3/1	hr 37.565398				99 10010110
	NR43	/hr 37.508307				10610710810
		•				1131141151
						12012112212



CONFIGURE STREAM 3

Add Instruments & control to achieve 40%



• From the CTL tab, add percentage stream control "PSC" and configure as below.

ERCENT	STREAM CONTROL
PSC	Notes
	 PERCENT STREAM CONTROL is used to regulate the concentration of a component or fraction of solids in the feed to a unit operation. 1- The module controls one input stream flowrate in order to maintain a specified concentration or fraction solids in the feed streams. 2- This control module may be placed on any unit operation. 3- The control action is performed prior to any chemical or phase changes, therefore, the values for exit streams may differ from the values set for input streams.
ON	Controller On
CN	1 Control Loop Number
TY	PSC Controller Type: FRC, FFC, PSC, FBC
	Controller description
ID	CONTROL %
OP	2 Unit operation
SN	2 * Number of the input stream to be adjusted
PS	0.40 * Concentration or fraction solids
CO	0 Calculation option. 0-Weight fraction 1-Mole fraction
CM	0 Component number. 0 for solids
	OK Cancel Help

Run the model and observe how your model

DISCUSSION POINTS

Did you achieve the desired parameters?

What have you learnt about controls?

How much water is needed to form the desired pulp?

Repeat the procedure to achieve a pulp of 70% solids (SIO2)

