

PROBLEM DESCRIPTION

This example will be used to illustrate the mass balance capabilities of METSIM.

Water and Acid will be added to a Mixer so that a specified concentration of Acid will be achieved in the product, stream 3.

A Feedback control will be used to adjust the flowrate of Acid entering the Mixer in stream 2 to achieve the desired concentration of **65 GPL of Acid in the product**, stream 3.

Problem Solution

1. Click on the Model Parameters Button . A window appears with a number of clickable tabs.

Project Site Data Calc Options Calc Parameters Dynamic Parameters Convergence

A. The window opens on the **Project** Entry window. From here a Title and a Case Identifier and other Project information may be entered.

B. Click on the Calc Options Tab and check the box next to Mass Balance.

- C. Click on the Calc Parameters Tab and set the units of Mass and Time to KG/Hr.
- 2. Click on the COMP Menu and then "DBAS Component Database".
- **A.** A window appears displaying a table of the elements. Select H, O and S and a list of all the components in the database composed of these elements will be called up. Select the aqueous **H2SO4**.

Compo	nents:		T	
No.	Name	Formula Pha	ise Type	
1	Water	H2O	aqueous	IMPORTANT NOTE: Concerning Sorting Components.
2	Acid	H2SO4	aqueous	Refer to NOTE 1 on Page 13.
B. From3. Click3. Click3. Click4. Click4. Click5. Click5. Click6. Click<li< th=""><th>om the Com ek on the S elect a Stre</th><th>np Menu select " creen Object B eam Mixer, MIX</th><th>ICPL Insert Pha</th><th>se Labels on Component Names".</th></li<>	om the Com ek on the S elect a Stre	n p Menu select " creen Object B eam Mixer, MIX	ICPL Insert Pha	se Labels on Component Names".

Hold the Cursor over a Button for a Description of the object.

Streams are added using the "STR Stream" Button.

Streams 1 and 2 are entered as feed streams, and stream 3 as the product stream.

INPUT STREAM DATA may now be entered.

 Stream 2
 10 KG/Hr

 Component Assays
 H2O10.07

 H2SO40.93

Click on the Stream Number with the "Edit Object Data" Tool 🛅 to activate the Input Stream Data Screen. Enter Phase flowrates first then you can enter Component Assays.

🔜 Stream 2												
0												Description
0	Output	Leve	1 0	Des	sign Factor		0	М	laximum Fl	ow		
0	Box Num	ber	0		0		0	V	ariables 1	23		
Acid 93%			LI							OK	Canaal	Т
Acid	Label											
	KG/HR			Wt.Frac.	գրլ	R	G/HR			Wt.Frac.	ցթե	KG/HR
SOLIDS	0		H20	0.07	128.26955	0.7	_	н	1	0.0269488	49.381626	0.2694882
SLD-ORG	0		H2S04	0.93	1704.1526	9.3		0	8	0.6690109	1225.9105	6.6901092
AQUEOUS	10							S	16	0.3040402	557.13011	3.0404025
ORGANIC	0	- 0										
MOLTEN	0											
MATTE	0											
SLAG	0											
GAS	0											
TOTAL	10											
% SOLID	0											
Contrl C	0											
Temp C	20											
Temp F	68											
Pres kPa	101.325											
Pres psia	14.695949											
Pres psig	0											
Time	1											
Gal/min	0.0240274											
L/sec	0.0015159											
L/min	0.0909542											
M3/hr	0.0054572											
NM3/hr	0.0054489											
Ft3/min	0.0032120											
SFt3/min	0.0032071											

PROCESS CONTROLS

The control strategy may now be entered. An FBC-Feedback Control may be entered which adjusts the flowrate of stream 2, Acid, until there is 65 GPL of acid in stream 3, the product. The Value Function to use is of the following form C VGPL S and can be read as

(Component Number) Grams Per Liter in (Stream Number).

Where C is the component number of the Acid and S is the stream number where the GPL of the Acid is calculated. The value function would be entered as;

c2 VGPL s3

The small c in front of the component number in the Value Function above is used to update the component number if changes are made to the order of the components.

The small s before the stream number in the Value Function above is used to update the stream number if stream numbers are renumbered.

Feedback Controller E	ntry Scre	ens							
FBC1 Screen							FBC2 Screen		
ID	CN	OP	NO	SN	LV	HV	VF	SP	\mathbf{SL}
Control Salt Content	1001	2	2	s2	0	1000	c3 VGPL s3	0.1	-1

EEDBACK	CONTROLLER
FBC 1	FBC 2 Notes
43	FEEDBACK CONTROLS simulate PID controls and other constraints.
ON	Controller On
CN	1001 Control Loop Number, (use with VCTL value functions).
TY	FBC Controller Type: FRC, FFC, PSC, FBC
	Controller Description
ID	Acid Controller
OP	2 * Unit operation number where set point is calculated.
NO	2 * Unit operation number where controlled variable is used.
	ADJUSTED STREAM OR MANIPULATED VARIABLE:
SN	\$2 * If a stream or streams are to be adjusted,
	enter number(s) or a predefined vector of the numbers.
	lfparameter'vn'or a reaction extent is to be adjusted, enter 0, And: Enter 'vn+VCTL CN' in the unit on 'Controls CtB' field.
	Or: Enter "VCTL CN' in the reaction 'EXPRESSION FOR EXTENT.'
	Also: Enter the starting value in the output field below.
ov	10 Output value of adjusted variable.
LV	0 * Lower limit of adjusted variable.
нv	20 * Upper limit of adjusted variable.
	OK Cancel Help

FEEDBACI	K CONTROLLER
FBC 1	FBC 2 Notes
	VALUE FUNCTION for CONTROLLED/MEASURED VARIABLE _SET POINT:
	APL expression for the current value of the set point variable.
VF	C2 VGPL S3
SP	65 * Set Point
DB	0 Not used
SL	1 Proportionality Switch
	* If VF increases with an increase in Controller Output, enter '1'.
	If VF decreases with an increase in Controller Uutput, enter '1'.
	PID USED FOR DYNAMIC SIMULATION ONLY
co	Off PID Method
	PROPORTIONALITY CONSTANTS: PID control, KP_KI required, KD optional
KP	* Proportional gain
KI	* Integral tuning constant
KD	Derivative tuning constant
	CONTROLLER TUNING PARAMETERS
EE	0 0 - Controller Factors
PG	0 0 Controller Outputs
ΡV	0 0 - Set Point Values
	OK Cancel Help

Saving Model Files

Each flowsheet is saved in a single file containing all data, graphics etc. All models are saved as internal format APL component files, (filename.SFW). After a model is loaded, all data becomes immediately available.

It is important therefore, to save the model regularly during development, and almost always prior to calculation.

After Calculating **B B b** the file the results may be viewed.

Acid Tank - Stream Mixe Mass & Heat Balance with FB	STREAM DATA					
CASE DEFINITION		AQUI NO	EOUS – KG/HI STREAM	R H2O	H2SO4	
Project Information:			+	+	+	
Owner :		1	Water Feed	50.0000	0.00000	
Location :		2	Acid 93%	0.2525	3.35403	
Title : Acid Tank	- Stream Mixer	3	PRODUCT	50.2525	3.35403	
Case:Mass & Heat Bala	nce with FBC & DDE					
Purpose : Training E	xample 1	AQUI	EOUS - WEIG	HT PERCEN	ЛТ	
Number :		NO.	STREAM	H2O	H2SO4	
Engineer :			+	+	+	
Logo File:		1	Water Feed	100.000	0.0000	
Modeller :		2	Acid 93%	7.000	93.0000	
Revision : A		3	PRODUCT	93.743	6.2568	
Data Storage File Name	: Example1.sfw	AQU	EOUS - GRAM	S PER LIT	TER	
		NO.	STREAM	H2O	H2SO4	
Mass Balance Option	: ON		+	+	+	
		1	Water Feed	998.259	0.00	
Units of Mass	: kilogram	2	Acid 93%	128.270	1704.15	
Units of Time	: hour	3	PRODUCT	973.875	65.00	

W DISPLAY VALUE FUNCTIONS FOR STREAMS

Clicking on the Display Value Function For Streams Buttons calls up the following window.

STEDEAM NO. Stream Label VLAB S MASS FLOW TOTAL MASS FLOW GASES MASS FLOW LIQUID MASS FLOW SOLIDS % Solids VOLUME M3/HOUR TEMPERATURE C PRESSURE kPa VKPAa S Controlled Temperature STQ[S/iTM	S VSTR S GC VSTR S LC VSTR S SC VSTR S 100×VPCS S VCMH S VTEC S	

Click on the EDIT LIST Button calls up the following window where you are able to create a new option.

Eule Display Value Functions			<u> </u>
Description	Value Function	No. Decimals	Insert
STREAM NO.	S	0	
Stream Label	VLAB S	0	Edit N
MASS FLOW TOTAL	VSTR S	3	
MASS FLOW GASES	GC VSTR S	3	Cut/Del
MASS FLOW LIQUID	LC VSTR S	3	
MASS FLOW SULIDS	JUNYUTA S	3	Сору
VOLUME M3/HOUR	YCMH S	1	n 1
TEMPERATURE C	VTEC S	2	Paste
PRESSURE kPa	VKPAa S	3	Char I
Controlled Temperature	STQ[S;∆iTMP]	1	
Display Value Functi o n		0	
			Down
			Sort
			Undo
			Save
]			Constal
			Lancel

Highlight the "Display Value Function" Line in the list displayed and Click on the EDIT Button. This calls Up the following Window where you Enter a Description which will be displayed on the Palette and any Value Functions you want displayed on a stream.

For "DS – Display Description" enter STREAM NUMBER AND ACID gpl in STREAM. For "VF – Display Value Function" enter

 $S \diamondsuit c_2 VGPL S$

Where S represents the Stream Number

 \bigcirc is the key combination which allows more than one statement on a line $ALT \sim c2$ VGPL S is grams per litter (gpl) of component two (H2SO4) in the Stream

	er Value Function to Replace Stream Numbers on Flowsheet.	
Fo	or example:	
5	Stream Labels VLAB S	
	Tonnes per Hour VMTH S	
8	30% Passing Size VP80 S	
	Copper gpl e29 VGLE S	
To	Enter More Than One Item, Separate Each with a ≇ (Alt `).	
Fo	vr example:	
1	femp and Pressure VTEM S ≷ VPSIS	
Not	e: Use capital S for all stream numbers.	
Dis	play Description	
S	TREAM NUMBER AND ACID gpl in STREAM	-
Dís	play Value Function	
S	♦ c2 WGPL S	_
0	Number of decimal places	
		1
	OK. Cancel	Help
	OK Cancel	Help

(f ł up the following window.

DISPLAY FUNCTION	×
STREAM NO. Stream Label VLAB S MASS FLOW TOTAL	S VSTR S
MASS FLOW GASES MASS FLOW LIQUID MASS FLOW SOLIDS	GC VSTR S LC VSTR S SC VSTR S
% Solids Volume M3/HOUR TEMPERATURE C	100×VPCS S VCMH S VTEC S
PRESSURE kPa VKPAa S Controlled Temperature STQ[S;TIMP] STREAM NUMBER AND ACID gpl in STREAM	S ♦ c2 VGPL S
EditList Display Level Exit	

Click on the Display you just created to have it displayed on the streams.

Design GRAPHIC STREAM BOXES

To design Graphic Screen Boxes select the "INPUT Menu" and then "ISBX Design Graphic Screen Boxes".

This will call up the following List Screen.

1	🛯 STREA	M DISPLAY BOXES							×
	No.	Description	Width	Label	Function	Label	Function	La	Insert
	1	Example	6	Stream	S	Kg/Hr	VCWT S		
	U		6						Edit
									Cut/Del
									Сору
									Paste
									Clear
									▲Up
									Down
									Sort
									Undo
									Save
									ОК
									Cancel

To add a new Graphic Screen Box highlight a blank line in the List Screen and Click the "Edit" Button. This will call up the following Entry Screen.

2 × Stream B	ox Number	
RESULTS	* Stream Box Description	
6 * Nume	ric Column Width	
STREAM No.	Label 1	
s		Value Function 1
Kg/Hr	Label 2	
VCWT S		Value Function 2
ACID gpl	Label 3	
C2 VGPL S		Value Function 3
	Label 4	
		Value Function 4
	Label 5	
		Value Function 5
	Label 6	
		Value Function 6
	Label 7	
		Value Function 7
	Label 8	
		Value Function 8
	Label 8	
		Value Function 9

With the "EDIT OBJECT DATA" Tool Click on the stream where you want the Graphic Display Box to be displayed. The following window is activated.

💷 Stream 3	3									
0	- un		- 218							Description
0	Output Level 0			Design Factor 0			laximum			
2 Box Number 0				0 0			ariables			
PRODUCT		L	. [OK	11 0000	1
Product	Label									
			_		_					
	KG/HR		Wt.Frac.	gpl	KG/HR			Wt.Frac.	gpi	KG/HR
SOLIDS	0	H20	0.9374323	973.87529	50.252454	H	1	0.1061859	110.31396	5.6922557
SLD-ORG	0	H2S04	0.0625676	65.000002	3.3540328	0	8	0.8733591	907.31121	46.817714
AQUEOUS	53.606487					s	16	0.0204549	21.250126	1.0965172
ORGANIC	0									
MOLTEN	0									
MATTE	0									
SLAG	0									
GAS	0									
TOTAL	53.606487									

Enter the Box Number of the Graphic Screen Box you wish to use in the "BOX NUMBER" field then click OK.

Turning on the Heat Balance Module and Heat Of Mixing.

A. Click on the Model Parameters Button **!!**. A window appears with a number of clickable tabs.

B. Click on the **Calc Options Window** and check the box next to Heat Balance and Heat Of Mixing Switch. Click OK to close the Menu.

C. From the COMP Menu select "ITHM Heat Of Mixing".

The window which is called up displays the Aqueous components and if they have "HTM-Heat Of Mixing Data" and if it is Activated. The above window shows Sulfuric Acid has HTM data but is not Activated.

To Activate the data click on the Sulfuric Acid in the List and a window displaying the HTM data for Sulfuric Acid is called up. Clicking OK Activates this data and returns you to the previous Window which now shows the Sulfuric Acid is Active.

SELECT COMPONENT	×
COMPONENT DATA ACTIVE Sulfuric Acid S2 Yes On	
Exit	

SAVE the flowsheet then CALCULATE and view the results to see the temperatures in the streams.

ACID MAKEUP SECTION STREAM NUMBER, ACID gpl in STREAM & TEMP oC

Acid Tank - Stream Mixer Mass & Heat Balance with FBC & DDE

STREAM DATA

AQUI	EOUS - KG/HI	R				
NO.	STREAM	H2O	H2SO4			
	+	+	+			
1	Water Feed	50.0000	0.00000			
2	Acid 93%	0.2531	3.36284			
3	PRODUCT	50.2531	3.36284			
AQUI	EOUS - WEIGI	HT PERCEI	T			
NO.	STREAM	H2O	H2SO4			
	+	+	+			
1	Water Feed	100.000	0.0000			
2	Acid 93%	7.000	93.0000			
3	PRODUCT	93.728	6.2721			
AQUI	EOUS - GRAM	S PER LIT	ΓER			
NO.	STREAM	H2O	H2SO4			
	+	+	+			
1	Water Feed	998.259	0.00			
2	Acid 93%	128.270	1704.15			
3	PRODUCT	971.336	65.00			
		HEAT BALAN	ICE SUMMARY	- 1	KILOCAL	JORIES/HOU

	INPUT	HEAT	HEAT	ENERGY	HEAT	HEAT	OUTPUT	
OP PROCESS STEP	STREAM	REACT	SOLUT	INPUT	LOSS	REQRD	STREAM	TOTAL
++	+-	+-	+	+-	+-	+	+-	+
1 ACID MAKEUP SECT	0	0	0	0	0	0	0	0
2 Acid Tank	-257	0	508	0	0	0	-251	0

HEAT OF REACTION - 1000 KILOCALORIES/HOUR

NO PROCESS STEP -----TOTAL----/MOLE---REACTION------

STREAM TEMPERATURES AND ENTHALPIES

NO. STREAM TEMP-C TEMP-F KCAL/HR BTU/HR KJ/HR 1 Water Feed 20.0000 68.0000-250.00000-991.00000-1044.0000 2 Acid 93% 20.0000 68.0000 -7.00000 -27.00000 -29.0000 3 PRODUCT 29.9004 85.8207 251.00000 997.00000 1052.000